Aphasia & AAC – Increasing Functional Communication

Ellen Bustamante, M.A. CCC-SLP
Stefan Henley, M.S. CCC-SLP
Camila Guerrero, M.A. CCC-SLP
Overview

• History of AAC in Aphasia
• Previous Research
• Study Design
• Study Methods
• Study Results
• Clinical Implications
• Practical Implementation
• Hands-On Practice
• Interdisciplinary Considerations
• Case Studies
• Future Research
Historical Use of AAC in Aphasia Populations

- Difficult to assess due to the rapidly changing nature of technology use in this area
- Timeline:
 - 1969: Prentke-Romich produces first communication device
 - 1980s: Initial use of AAC: basic communication boards
 - 1981: Medicare begins covering speech generating devices (SGDs)
 - 1982: Prentke-Romich develops first device with synthesized speech
 - 1983: Students at Carnegie-Mellon University develop EyeTyper
 - 1993:
 - GoTalk first launched with stand alone devices
 - DynaVox develops the DigiVox, combining recorded speech with changeable paper overlays
Timeline Continued

– 2000:
 • Assistive Ware develops KeyStrokes (virtual keyboard)
 • Prentke-Romich develops touch screen device
– 2001: Medicare begins covering AAC devices
– 2006: BlinkTwice develops hand-held Tango SGD
– 2008-2009: Eye gaze systems developed (ECOPoint, EyeMax)
– 2010:
 • First generation iPad
 • First version of ProLoQuo2Go app
– 2011: First version of GoTalk app
– 2015:
 • National Coverage Determination (NCD) issued by Medicare
 • Steve Gleason Act signed into law
Research: Positive Factors for AAC Use

- General increase in amount of research since early 2000s
- Generally positive impact in most studies
- Portability and touch screens
- Improved modalities
- Active role of communication partners
Research: Negative Factors for AAC Use

• Negligible difference low tech vs. high tech
• General paucity of data
• Lack of carry-over
• Participant frustrations
• Perception of AAC
Research: Other Considerations

- Employment factors
- Crime and abuse
- Access
- Chronic nature of aphasia
- Nursing considerations:
 - Known factors
 - Time factors
 - Clinical implications
Study Design, Recruiting and Screening, Inclusion/Exclusion Criteria

• Recruiting
 – Flyers posted in the community
 – SLP Referrals of current and previous clients with aphasia

• Telephone Screening
 – Determine whether participant met inclusion/exclusion criteria
 – Inclusion
 • At least three months post onset of aphasia
 • At least one functional communication impairment resulting from aphasia
 – Communicate vital personal information? (name, address, condition)
 – Ask for things he/she wants or needs?
 – Understand and follow directions?
 – Make comments and describe things?
 – Inform caregivers of pain and other medical needs?
 – Participate in social interactions?
Study Exclusion Criteria

– Exclusion
 • Degenerative diagnosis such as dementia
 • Motor impairments that preclude use of a touch screen
– Additional information for evaluation preparation
Pre-Testing

- **Outcome Measures**
 - Pre- and post-testing with the WAB Part 1
 - Communication satisfaction questionnaire
 - Communication success questionnaire
 - Session tracking log
Study Methods

• Final demographics
 – 16 participants
 – Age range from 30 to mid-80s
 – Time since diagnosis ranged from 12 months to >8 years

• Therapy/Intervention
 – 6 free one-hour treatment sessions with an SLP
 – iPad lending library; provision of free AAC application
 – Each participant’s needs were targeted with individual curriculum
 – Participants and primary communication partners trained in the use of the iPad program
 – Home program provided each session
Study Results

Western Aphasia Battery (WAB)

- **Total**
 - All categories of the WAB had a positive mean difference
 - Increase in spontaneous speech statistically significant (Paired T-test; p=0.0330)

- **Subgroup analysis**
 - Omitting global aphasia: Statistically significant increase in both spontaneous speech and total WAB score (Paired T-test; p=0.0361, p=0.0494)
 - Individuals with Broca’s aphasia demonstrated the greatest effect size for spontaneous speech improvement (Paired T-test; p=0.0093)
 - Global aphasia: No statistically significant increases for WAB; anecdotally noted that functional communication still improved
Study Results Cont.

Questionnaires

- Communication Satisfaction
 - Total score (Paired T-Test; p=0.0352)
 - Communicating needs to a physician (Paired T-Test; p=0.0234)

- Communication Success
 - Total score (Paired T-Test; p=0.0332)
 - Communication of medical information (Paired T-Test; p=0.0059)
Clinical Implications

• Overall, subjective improvements with AAC devices noted throughout study. Facilitated speech for patients with aphasia as seen in WAB scoring during before and after scoring.
• Improved Functional Communication
 – Doctor-patient interaction
 – Routine outings
 – Home environment
 – Meeting daily needs
• Facilitates acquisition of speech
 – Patients with Broca’s aphasia demonstrated significant improvements in spontaneous speech
 – All other types of aphasia demonstrated changes in facilitation of word finding and naming.
Clinical Implications Cont.

- Effective for non-verbal global aphasia patients
 - Facilitated functional messages through multi-modal domains such as visual cuing, auditory reinforcement, and tactile repetition
 - Increased patient participation in everyday conversations
- Integration of video models with AAC
 - Provided visual feedback for verbalization of words/phrases
- Potential for continued benefits for patients with aphasia 5 years post
- Improvement of general skills for use of electronic devices
- Increased potential for use of AAC device in acute care setting.
Practical Implementation Across Settings

• General use of AAC in Inpatient Settings
• Low-tech communication boards in hospital settings
 – Easily accessible and easily made
 – Difficulties with candidacy and education
• Acute Hospital
 – Probably not the ideal setting to introduce AAC
Practical Implementation Across Settings

- Acute Rehab
- Positive factors:
 - Longer length of stay
 - Increased potential for interaction with MDs/ nurses
 - Increased potential for family interaction in therapy sessions
 - If set up correctly could be an economy of scale
- Negative factors:
 - Needs a clinical pathway that at this time does not really exist
 - Requires greater training of nursing staff
 - Cannot leave hospital issued iPad with patient
 - Need a library of iPads for use by staff
Practical implementation Across Settings

• Post-acute Rehab
 – Generalization possible with associated factors:
 • Greater potential with longer length of stay
 • More opportunities for community outings
• Outpatient/ Home Health
 – Chronic lack of in home speech services
 – At this point, patients/ clients would need their own device
 – Insurance may not cover it
Hands On!

- Divide into 3 groups
- Each group will rotate through all stations – everybody will get a chance to try every application

Ellen: Dynavox & Sonoflex
Stefan: GoTalk
Camila: ProLoQuo2Go
Choosing a Device

- Practical Advice
 - Budget
 - Complexity
 - Choosing an established application
Interdisciplinary Consideration

- There are several considerations to have when integrating AAC devices/programs:
 - Hemiplegia
 - Point of access
 - ROM for upper extremities
 - Considerations for neglect
 - Motor skills (fine/gross)
 - Direct selection: Fine motor ability to extend/isolate a finger to interact with a touch screen device
 - Indirect selection: Stylus, switch input, etc.
 - Age
 - Coincides with level of success rate
 - Considerations re: medical stability
 - Considerations for differing needs within age ranges
Interdisciplinary Considerations Cont.

• Technical knowledge use
 – Level of integration and participation with device in everyday use.
 – Learning gap and increased time investment needed for those with less technological experience.

• Cognitive compromises
 – Static display
 – Dynamic display

• Communication partner integration level
 – Ease of setup

• Language compromises
 – Visual/written stimulus points
Case Study 1: Broca’s Aphasia

- Over 5 years post-onset
- Former computer engineer
- Learned to program application independently
- Increased verbal communication from single words and short phrases to sentences and familiar conversation topics
- Decreased frustration significantly
- Able to self-cue using AAC when having difficulty word-finding
Case Study 2: Global Aphasia

- Stereotypic utterance only
- Over 2 years post-onset
- Not interested in targeting “wants and needs”
- Brought in family photos and photos of past work experiences
- Used “hotspots” to tell stories about family, work, etc.
- Increased participation in conversation, decreased frustration
- Also able to communicate medical history independently
Case Study: Apraxia of Speech

- Severe apraxia of speech in addition to aphasia – no intelligible verbalizations
- 2 years post-onset
- Recorded videos of mouth saying functional words and phrases (e.g. children’s names, I need help, etc.)
- Pt able to watch video and listen with headphones, then repeat phrases verbally with at least 75% intelligibility
- Ultimately returned to regular therapy to use a combination of MIT and video imitation practice to increase verbal communication significantly
- Able to relay entire medical history and medication routine to new caregiver
Future Research

During this study we were able to determine the need for further studies in:

• Point of access
• Multi-disciplinary integration (PT and OT)
• Means to determine the best and fastest ways for providing AAC services to people with complex communication needs
• Programs for increasing public awareness
• Longitudinal studies of consistency and improvement of daily AAC use
• Effectiveness of AAC interventions by studying users of a variety of ages
• Application of AAC in a wider range of environments and situations
References:

References:

Questions?
THANK YOU!

Ellen Bustamante, M.A. CCC-SLP
Stefan Henley, M.S. CCC-SLP
Camila Guerrero, M.A. CCC-SLP